半导体预电离器的 SiC 片是由 SiC 晶粒与少 许 结合剂混合、压模、烧制而成的。片中所含 SiC 晶粒 密度 ρ 对紫外光强及输出的影响是最主要的。 图 4 是不同 ρ 值、不同工作电压下的输出能量值。 该图 表明,对应于较大的 ρ 值,输出能量也较大。这是因 为随密度 ρ 值增加,预电离强度增大的缘故。由于 压模工艺的限制,密度最大只能达到 2.0g/cm³。

四、激光性能

在实验中,还研究了不同工作气体混合比例、气 压、不同电压下的输出特性。结果表明,气体混合比 例为 CO₂:N₂:He=1:1:4、气压 1 atm、工作电压 32 kV 条件下,单脉冲输出能量为最大,其值为 274 mJ,峰值功率为最大,其值为 9 MW;输出最大能 量密度 24 J/L;峰值功率密度 780 MW/L;效率 4.5%。

对器件运行的寿命及脉冲重复频率也进行了实

验研究。结果表明,在电压 32 kV、重复频率0.5 Hs 条件下,器件运行寿命>10⁵ 脉冲; 重复频率为 3 Hz 时,连续无弧运行约 10⁴ 脉冲。由于在无催化剂、无 气体流动的运行条件下,重复频率高,则气体热效应 严重,且 CO₂离解甚多,这可能是导致寿命明显缩短 的原因之一。

本实验研究工作受到了曹秋生、蹇庄华研究员的精心指导与帮助,在此深表谢意。感谢中国科学院电子所 5034 组的同志和浦伯伟工程师的大力支持。

参考文献

- 1 R. V. Babcock et al., IEEE J. Quant. Electr., QE -12 (1), 29(1976)
- 2 A. M. Bobinson, Canad. J. Phys., 50, 2138 (1972)
 (收稿日期: 1987年10月12日)

螺旋形空心阴极 IR Cu+ 激光器

陈钰清 (浙江大学光仪系) H. J. Eichler, R. MacDonald (西柏林工业大学光学研究所)

Helical hollow cathode IR copper ion laser

Chen Yuqing

(Department of Optical Instrument, Engineering, Zhejiang University, Hangzhou)

H. J. Eichler, R. MacDonald

(Technische Universitat Berlin, Optisches Institut Strasse Des 17, Juni 135, 1000 Berlin 12, Germany)

提要:研究了螺旋形空心阴极 IBCu+激光器的性能,测量了不同螺旋结构激光器的输出功率。在放电长度 1.2m 的分段放电管中,在 780 nm 波长时获得最大输出功率为 1.3 W。

关键词: 空心阴极,铜

螺旋形空心阴极已在红外区获得铜离子激光谱 线振荡^[11],最强的谱线780.8 nm,所有铜离子谱线的 振荡都能够在 He 和He-Ar 放电中获得。在这篇文 章中,我们报道了螺旋形空心阴极铜离子激光四阴 极结构对放电特性和输出特性的影响,并获得合理 的结构尺寸,实验使用 He 作为缓冲气体,放电长度 120 cm,在780.8 nm 获得峰值输出功率1.3 W 铜离 子谱线。

一、实验装置

实验装置的阴极由螺旋形水冷却铜管构成,每 一个螺旋阴极的长度为100mm、内径为6mm,螺距 分别是8=5mm、7mm和9mm,阴极是外径为4 mm的铜管绕成的,共轴阳极亦构成真空室且水冷。 螺旋形空心阴极的放电激励由半波整流的电源供 电,脉冲重复率为50Hz,占空系数约5~12。 螺旋形空心阴极是径向对称结结构,铜的溅射 蒸发是微量(处于0.01 mm/hr)且是对称变化,和槽 形空心阴极相比,这种阴极的变形很小,能在轴向产 生均匀的负辉,故这种对称结构螺旋形空心阴极放 电稳定性相当好^[3],同时这种断续阴极表面也可增 加放电稳定性^[3]。共振腔反射镜的曲率半径均为3 m,全反射镜的中心波长为780 nm,反射率为99%, 透过率0.6%,输出耦合镜的透过率为1.25%。放 电总长为120 cm。放电电压和放电电流的峰值以及 平均输出功率同时记录在双通道记录仪上,平均输 出功率用激光仪器公司出品的17A型电热功率计 测量。

二、实验结果

(1) 电流-电压特性曲线

图 1、2 表示不同充气种类和充气气压时的特性 曲线。从图上可以看到具有大的螺距的 空心 阴极, 工作电压随电流的增加变化较快,而且对充气气压 的影响也较大。增大阴极内径也能 稍 增加 放 电电 压。

我们知道,螺旋形空心阴极放电中,电荷的损失 是比较大的,因为部分离子和电子能够通过阴极螺 距缝隙扩散出去并复合^[3],为了补偿离子、电子的损 失,必须要提高放电电压,亦即电子必须要有高的能 量,产生一定数量的离子轰击阴极表面。所以,阴极 的螺距增加,工作电压必然增加^[1]。

功率特性曲线。对不同的螺距 *S*, *d*_i=6 mm, *l*=10 cm, 参数是充气气压

(2) 输出功率随几何结构的变化

图 3 表示在红外区 A=780.8 nm 对三种不同的

靈遊形空心阴极是容向对称曾绪赦。蜀的震脉

年均匀的

螺旋形空心阴极 IR-Ou+ 激光器在不同螺距 8时, 阈值电流与充气气压的关系曲线, l=10cm 图 4

螺距 S=5mm、7mm 和 9mm,在 He-Ar 混合气体 中放电时输出功率和放电电流的特性曲线。从图上 可以看到平均激光输出功率依赖干放电电流[1],获 得的最高输出功率是耳螺距 S=9mm 的阴极,其次 是S=7 mm,最低是S=5 mm。且观察到功率饱和 效应。在图中,还可观察到输出功率随着缓冲气体 气压的增加而增加,但在气压高于24mbar时,放电 开始出现不稳定。 通常在 He 气中, 还附加少量的 Ar,最大输出功率是在Ar的分压为0.5~0.7 mbar 范围内, 这与其他空心阴极铜离子激光器是一致 5 18-116-AL 的[4]。 1 - 11-5H L &

(3) 阈值电流

激光阈值电流是 He-Ar、He-Ne 气压的函数, 对于不同螺距 S,长度为 10 cm 的空心阴极, 阈值电 流与充气气压的关系曲线表示在图4中。对于 He 气压为10mbar, 氯为0.4mbar时, 最纸阈值电流为 1.2A、缓冲气压为9~14mbar时阈值最低。当气 压升高时,阈值电流升高,在缓冲气体中含有少量的 Ar(He:Ar=20:1)有助于降低阈值电流。

(4) 效率

图 5 表示系统的效率,即总的输出光功率与入 射电功率之比。对不同的螺距,效率是不同的,其中

图 5 螺旋形空心阴极 IR-Cu+ 激光器的效率和放电电流 的关系曲线,参数是阴极螺距。 $d_i = 6 \text{ mm}, l = 10 \text{ cm}$

螺距S=7mm具有最高的效率,而S=5mm和9 mm的效率稍低。 social the state

我们知道,螺距增大时,放电电压升高,使He+ 离子和铜离子具有更高的能量,由于溅射产生更多 的铜原子,同时二次电子的能量也增加,所以产生更 多的惰性气体离子,通过电荷转移反应产生更多的 Cu*离子,所以放电电压升高,离子密度亦升高,有 利于提高输出功率。但螺距8再增加时,离子和电 子的扩散损失也增加, Cu+密度增加不多, 不利于输 出功率的提高,故导致效率下降。所以,阴极应有一 个合理的结构尺寸。

实验中,我们使用放电长度为120 cm 的螺旋形 空心阴极,内径为6mm,螺距为7mm,在He气压 24 mbar、放电电流180 A(放电电流密度1.2A/cm²) 的条件下,获得红外峰值功率为1.3W,其IR 输出 功率特性曲线表示在图 6 中。在图中我们还没有观 察到铜离子 IR 激光输出功率的饱和现象[1,2]。由于 阴极的冷却和电源电流的限制, 故不能做更高电流 的输出特性试验。

- M. Grozeva et al., Opt. Commun., 51(6), 417(1984)
 H. J. Koch, J. Phys. E: Sci Instrum., 16, 122 (1983)
- 3 K. Rbzsa, Z. Naturf., 35A, 647(1930)
- 4 H. J. Eicher et al., IEEE J. Quant. Electr., QE-15(9), 908(1979)
- 5 B. E. Warner et al., J. Appl. Phys. 50, 5694(1979)

(收稿日期: 1987年11月27日)

用于大体积短脉冲准分子激光器的预电离 X 光源*

欧阳斌 (中国科学院上海光机所) M. Steyer (西德马普生化所)

An X-ray preionizator for big volume and high pressure excimer lasers

Ouyang Bin

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

M. Steyer

(Max-Planck-Institut für Biophysikalische Chemie, Abteilung Laserphysik)

提要:报道了适用于大体积高气压短脉冲的准分子预电离脉冲 X 光源,着重对获得高强度快上升 X 光源的 技术作了介绍,并给出其它性能的实验结果。

关键词: 准分子激光器, X光源

一、引言

发展准分子激光器的关键之一是预电离技术。 预电离方法有简单的紫外光预电离、电子束预电离 等,它们都存在一些比较难克服的缺点。 X 光预电 离可以做成独立的装置,使用灵活方便。关于 X 光 预电离的准分子激光器已有报道^[1~3],但着重介绍的 是较长脉冲 X 光预电离源的研究。 要得到短脉冲 高输出的准分子激光器件,固然要认真研究主放电 回路和放电技术,但预电离技术也是重要的先决条 件。在此介绍了压缩 X 光脉冲技术和获得上升前 沿远小于 50 ns 的实验结果,最后也给出其他性能。

二、结构和简单原理

用于预电离的 X 光光源, 可以是热阴极 X 光管 产生输出连续的 X 光, 也可以用冷阴极二极管。对 于脉冲准分子激光器, 要求脉冲 X 光光源采用冷阴 极的比较多。 图1 是我们实验用 X 光光源。 阳极 是钽箔做的, X 光辐射在电子束飞行方向最强, 透过

1-加速电容; 2-碳绒毯阴极, 3-钽阳极

10 μm钽箔(用导电胶胶在真空器底板上),由底部窗 口输出。碳绒毯阴极其面积大小可以改变。二极管 器壁是用 6 mm 的不锈钢制成,底板是铝材料厚 6 mm,中间位置在 10×40 cm²范围减薄到 2 mm,是 X光的输出窗口。阴极和阳极间的距离可以调整。 图1 左边是用于激励 X 光二极管的 高压发生

* 这一工作是在马普生化所做的。